The future trend of lithium ion LiFePO4 battery industry

Categories: Industry news



Time of issue:2022-11-14 17:18


  The new technology of the battery industry is gradually becoming mature. The module-free design of lithium batteries, blade batteries, clip batteries and other system structure innovations have achieved large-scale application, and breakthroughs have been made in cutting-edge technologies such as high-nickel cobalt-free batteries and solid-state/semi-solid-state batteries. At the same time, with the advancement of technology, the energy level of lithium ion LiFePO4 battery continues to rise. 

  The energy density of the ternary prismatic battery is close to 300Wh/kg, and the soft pack battery has reached 330Wh/kg; the energy density of the semi-solid battery has also exceeded 360Wh/kg, and it is expected to achieve 400Wh/kg by 2025; in the future, the energy density of the lithium-sulfur battery is expected to reach 600Wh/kg.

In particular, liquid electrolyte lithium ion LiFePO4 battery are at risk of thermal runaway, and oxide electrolytes are expected to be an important choice for high-performance batteries. Future lithium ion LiFePO4 battery will develop towards higher specific energies, and the entire cell will evolve from liquid to safer hybrid solid-liquid and all-solid-state batteries. At the same time, high-nickel and lithium-rich manganese-based cathodes with higher specific energy will become a major development direction to meet the requirements of passenger cars with a cruising range of 1000km and the requirements of electric aircraft; in addition, based on modified lithium manganate, lithium iron phosphate , The positive electrode material of nickel manganese spinel is matched with the high-capacity negative electrode material to form a solution for the battery life of 600 kilometers of pure electric vehicles.

  Accelerate the promotion of battery recycling to achieve the "dual carbon" goal. lithium ion LiFePO4 battery have high recycling value, and retired batteries can still be recycled, upgraded and put into use. Even when the battery is scrapped, the lithium-cobalt-nickel resources in it can be recycled. The recycling of metals in cathode materials and the recycling of aluminum and copper in batteries are not only critical to the security of the supply chain, but also of great significance to the achievement of carbon emission goals. At present, there are three main battery recycling methods: physical recycling, fire recycling, and wet recycling.
1.Physical recycling can reduce carbon emissions in the entire battery production chain through recycling; 
2.Fire recycling methods reduce carbon emissions and consume relatively large amounts of energy;
3.Wet recycling will reduce energy consumption, but There are problems such as the discharge of liquid solvent pollutants. According to the estimates of relevant institutions, the recycling of battery materials will form a scale in 2030; around 2050, the supply of original mineral resources and recycled resources will reach a considerable level. In the longer term, recycled resources will gradually completely replace the demand for original resources.
4.Lightweight, high energy density, high safety and fast charging are important development directions of the industry in the future. In recent years, consumer electronic products have developed in the direction of fashion and thinning, ergonomic shape design and mobile interconnectivity. In the context of the expansion of radio frequency frequency bands, pixel density improvement, and enhanced processor performance of consumer electronic products, consumer electronics The energy consumption and heat generation problems of electronic products are also increasingly prominent, and the demand for lithium ion LiFePO4 battery with light weight, small size, large capacity, high energy density, customizable size, good safety performance and fast charging is increasing. At the same time, in the face of the rapid development of electric vehicles and energy storage markets, the performance of lithium ion LiFePO4 battery in terms of high safety, high specific energy, long life and fast charging has attracted consumers' attention.

  Technological progress further promotes the development of the industry. Electric bicycles and low-speed electric vehicles will increasingly use lithium ion LiFePO4 battery to replace traditional lead-acid batteries; in the field of consumer battery applications, the maturity and large-scale commercial application of 5G technology will generate demand for replacement of smart mobile devices. In addition, the rise of emerging electronic products such as wearable devices, drones, and wireless Bluetooth speakers will also bring new markets to consumer batteries; in the field of energy storage battery applications, grid energy storage, base station backup power, home optical storage systems, There is a lot of room for growth in electric vehicle light-storage charging stations. It is foreseeable that the development space of the lithium ion LiFePO4 battery industry is broad.

Keyword:lithium ion LiFePO4 battery,LiFePO4 battery ,lithium ion battery,lithium iron phosphate,LiFePO4 battery industry

What is 48V lithium ion battery with communication

With the development of communication technology, operators require equipment to develop in the direction of integration, miniaturization, light weight and high reliability. 48V lithium ion battery, with its many outstanding features, conforms to the development trend of communication equipment and is the best choice for communication backup power.

Advantages of Discount Grade A 48V 100Ah Energy Storage LiFePO4 Battery for wind power generation

What are the advantages of Discount Grade A 48V 100Ah Energy Storage LiFePO4 Battery for wind power generation? 1. First of all, the energy storage of lithium iron phosphate battery can effectively suppress the fluctuation of wind power power, and effectively smooth the output power under the three modes of normal operation, grid fault operation and off-grid operation during the wind power system grid-connected operation, Improve power quality.

Advantages of Energy Storage LiFePO4 Battery for wind power generation

Energy Storage LiFePO4 Battery matching energy storage system has become the mainstream choice in the market. According to reports, lithium iron phosphate batteries have been tried to be used in electric buses, electric trucks, user-side and grid-side frequency regulation. Wind power generation, photovoltaic power generation and other renewable energy generation are safely connected to the grid. The inherent randomness, intermittency and volatility of wind power generation determine that its large-scale development will inevitably have a significant impact on the safe operation of the power system.

Role of Energy Storage LiFePO4 Battery in the market

Lithium iron phosphate battery has a series of unique advantages such as high working voltage, high energy density, long cycle life, low self-discharge rate, no memory effect, green environmental protection, etc.,

Powerwall Lithium ion battery company tells you how lithium ion batteries work

Powerwall Lithium ion battery company talks about the working mechanism of lithium ion batteries. Redox reactions are not explained here. People with poor chemistry foundation, or those who have already returned their chemistry knowledge to their teachers, will feel dizzy when they see these professional things, so let’s make some straightforward descriptions.

Powerwall Lithium ion battery factory introduces the small differences of similar products

Powerwall Lithium ion battery factory will introduce to you: the difference between lithium battery and lithium ion battery Lithium batteries and lithium-ion batteries are two different concepts, the main differences are as follows: The positive electrode material of lithium battery is manganese dioxide or thionyl chloride, and the negative electrode is lithium;